<?php
// $addFive = function($n)
// {
// return $n + 5;
// };
// $addFive = fn($n) => $n + 5;
$scores = [70, 90, 80];
// $updatedScores = array_map($addFive, $scores);
$updatedScores = array_map(fn($n) => $n + 5, $scores);
print_r($updatedScores);
カテゴリー: programming
PHP 配列と新しい配列
<?php
$scores = [70, 90, 80];
$updatedScorfes = [];
foreach ($scores as $score){
$updatedScores[] = $score + 5;
}
print_r($updatedScores);
PHP 配列とforeach
<?php
$scores = [70, 90, 80];
foreach($scores as $key => $value){
echo “Score{{$key}}: {$value}” . PHP_EOL;
}
PHP 配列の要素を変数に代入
<?php
// $scores = [70, 90, 80];
// $firstScore = $scores[0];
// $secondScore = $scores[1];
// $thirdScore = $scores[2];
// list($firstScore, $secondScore, $thirdScore) = $scores;
// [$firstScore, $secondScore, $thirdScore] = $scores;
// echo $firstScore . PHP_EOL;
// echo $secondScore . PHP_EOL;
// echo $thirdScore . PHP_EOL;
$x = 10;
$y = 20;
[$y, $x] = [$x, $y];
echo $x . PHP_EOL;
echo $y . PHP_EOL;
PHP 配列の要素を入れ替える
<?php
$scores = [70, 90, 80];
// sort($scores);
// print_r($scores);
// rsort($scores);
// print_r($scores);
// asort($scores);
// print_r($scores);
// arsort($scores);
// print_r($scores);
// shuffle($scores);
// print_r($scores);
$reversed = array_reverse($scores);
print_r($reversed);
PHP array_splice
<?php
$scores = [70, 90, 80];
array_splice($scores, 1, 0, [30, 20]);
array_splice($scores, 2, 1);
$removedItems = array_splice($scores, 1, 1, [10, 15]);
print_r($scores);
print_r($removedItems);
二次元画像生成AI python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from tqdm import tqdm
# データセットの変換(リサイズと正規化)
transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # ピクセル値を[-1, 1]の範囲にスケーリング
])
# AnimeFaceDatasetのロード
dataset = datasets.ImageFolder(root='C:/Users/tyosu/projects/anime_faces',transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
# Generator(生成モデル)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.Linear(100, 256),
nn.ReLU(True),
nn.Linear(256, 512),
nn.ReLU(True),
nn.Linear(512, 1024),
nn.ReLU(True),
nn.Linear(1024, 64 * 64 * 3),
nn.Tanh()
)
def forward(self, input):
output = self.main(input)
return output.view(-1, 3, 64, 64)
# Discriminator(判別モデル)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Linear(64 * 64 * 3, 1024),
nn.ReLU(True),
nn.Linear(1024, 512),
nn.ReLU(True),
nn.Linear(512, 256),
nn.ReLU(True),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, input):
input_flat = input.view(-1, 64 * 64 * 3)
return self.main(input_flat)
# モデルのインスタンス化
G = Generator()
D = Discriminator()
# ロス関数とオプティマイザ
criterion = nn.BCELoss()
optimizerD = optim.Adam(D.parameters(), lr=0.0002)
optimizerG = optim.Adam(G.parameters(), lr=0.0002)
# ランダムノイズ生成関数
def generate_noise(batch_size):
return torch.randn(batch_size, 100)
# トレーニングループ
num_epochs = 50
for epoch in range(num_epochs):
for i, (real_images, _) in enumerate(tqdm(dataloader)):
batch_size = real_images.size(0)
# 本物の画像のラベルは1、偽物の画像のラベルは0
real_labels = torch.ones(batch_size, 1)
fake_labels = torch.zeros(batch_size, 1)
# Discriminatorの学習
optimizerD.zero_grad()
outputs = D(real_images)
real_loss = criterion(outputs, real_labels)
noise = generate_noise(batch_size)
fake_images = G(noise)
outputs = D(fake_images.detach())
fake_loss = criterion(outputs, fake_labels)
d_loss = real_loss + fake_loss
d_loss.backward()
optimizerD.step()
# Generatorの学習
optimizerG.zero_grad()
outputs = D(fake_images)
g_loss = criterion(outputs, real_labels) # 生成画像を本物と認識させたい
g_loss.backward()
optimizerG.step()
print(f'Epoch [{epoch+1}/{num_epochs}] | d_loss: {d_loss.item()} | g_loss: {g_loss.item()}')
# 生成された画像を表示
if (epoch + 1) % 10 == 0:
fake_images = G(generate_noise(64)).detach().cpu()
plt.imshow(fake_images[0].permute(1, 2, 0) * 0.5 + 0.5)
簡単な画像生成AI python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image # 画像保存のための関数
import os # ファイルの保存先を指定するためのライブラリ
# VAEのエンコーダーとデコーダー
class VAE(nn.Module):
def __init__(self, input_dim=784, hidden_dim=400, latent_dim=20):
super(VAE, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc21 = nn.Linear(hidden_dim, latent_dim)
self.fc22 = nn.Linear(hidden_dim, latent_dim)
self.fc3 = nn.Linear(latent_dim, hidden_dim)
self.fc4 = nn.Linear(hidden_dim, input_dim)
def encode(self, x):
h1 = torch.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def decode(self, z):
h3 = torch.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
# VAEの損失関数
def loss_function(recon_x, x, mu, logvar):
BCE = nn.functional.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# モデルの定義とデータローダーの準備
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vae = VAE().to(device)
optimizer = optim.Adam(vae.parameters(), lr=1e-3)
transform = transforms.ToTensor()
train_dataset = datasets.MNIST('.', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# トレーニングループ
vae.train()
for epoch in range(10): # 10エポックで学習
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = vae(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
print(f'Epoch {epoch + 1}, Loss: {train_loss / len(train_loader.dataset)}')
# 学習したモデルで画像生成
vae.eval()
with torch.no_grad():
z = torch.randn(64, 20).to(device)
sample = vae.decode(z).cpu()
sample = sample.view(64, 1, 28, 28) # 28x28の画像サイズに変換 (MNISTデータのフォーマット)
# 保存先ディレクトリを指定
os.makedirs('generated_images', exist_ok=True)
save_image(sample, 'generated_images/sample.png')
print("画像生成完了: 'generated_images/sample.png' に保存されました")
PHP 配列の要素
<?php
$scores = [70, 90, 80];
$scores[] = 60;
$moreScores = [10, 20, 30, ...$scores];
print_r($moreScores);
PHP in_array、array_search
<?php
$names = ["Taro", "Jiro", "Saburo"];
echo array_search("Jiro", $names) .PHP_EOL;